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Abstract—The dynamic response of u shear-detormable elastic plate to the impact of 4 mass causing
permanent indentation has been considered. Experimental data form the basis of the indentation
law and an elastic recovery is assumed when the striking mass leaves the plate. The contact force
and the plate center displiacement time histories as well as the encrgy absorbed during impact have
been calculated. These results have been compared for elastic impacts with and without shear
detformation effeets.

INTRODUCTION

The impact problems on beams and plates have been studied quite extensively (Goldsmith,
1960). The clastic impact of & mass on such structures has been considered in the classic
works of Timoshenko (1913), Karas (1939), Zener (1941). Chattopadhyay (1977) addressed
the eftfect of shear deformation on the impact response of elastic plates using Mindlin (1951)
plate theory and concluded that tor high velocities such effects are important. In an
experimental study, Barnhart and Goldsmith (1957) showed that permanent craters can be
produced even at relatively low impact velocities. Chattopadhyay (1987) used experimental
data on permanent indentation in order to obtain the dynamic response of large clastic
plittes. The contact toree and the displacement time historics were shown to be significantly
altered with the inclusion of permanent indentation effects. Furthermore, additional energy
was shown to be dissipated in the permanent indentation process, when compared to the
clastic case,

The present work is aimed at comparing the two important mechanisms, namely that
of shear deformation and permanent indentation on the impact response of elastic plates.
In previous works such effects were individually treated. Because of the nonlinear load
deflection relationship at the contact region a simple superposition is not possible to address
the two mimportant effects. The motivation of this work is guided by two important
considerations, namely (a) better mathematical modeling and (b) practical application
involving permanent indentations. First, the shear deformation mechanism provides a
good correlation between two-dimensional plate theory and the three-dimensional clastic
solutions. Sccond, permanent indentation effects provide important information on erosion,
wear and fatigue, when considering impacting between machine elements.

In this work. the contact force and the plate displacement time historics have been
calculated using an experimentally obtained indentation law for the classical plates as
well as the shear-deformable Mindlin plates. The results have been compared with the
corresponding clastic impact solutions,

In plate impact studies, it is relevant to determine how much energy of the striking
mass is absorbed in the plite. An important contribution to the understanding of impact
characteristics has been provided by Zener and Feshbach (1939) in their considerations for
energy transfer. The actual contact force F(r) is expressed in terms of a normalized force.
It has been established by Zener and Feshbach and extended by Lee (1940) that errors
resulting from the ignorance of actual contact force can be mostly climinated in this way.

t This puper was presented at the Twelfth Canadian Congress of Applied Mechanics, Carleton University,
Ottawa, 28 May -2 June [989.
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The method uses a normalized contact force which is insensitive to the actual description
of the contact force. In this work the energy loss during impact has been calculated by using
the peak contact force and contact times for elastic and inelastic impacts using classical and
shear deformable plate theories.

RECTANGULAR PLATE VIBRATION

The natural frequencies of vibration of rectangular plate should be determined in order
to study the plate impact response. For this purpose. we consider the classical plate theory
and the Mindlin plate theory which considers shear deformation effects.

(1) Classical plate theory
The equation of motion in the absence of external loads is given by

ctw o'w *w phétw
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where w is the transverse displacement, p is the mass density. & is the plate thickness and
D = En'/12(1 —v*), where £ is the Young's modulus and v is Poisson’s ratio for the plate
material.

From eqn (1) we obtain the frequency equation of a simply supported plate for the
{m, n) modc as,
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(i1) Mindlin plate theory
The equations of motion developed by Mindlin are given by
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where ¢ and ¢, arc the rotations of the plane sections, G is the shear modulusand x = /12
is a shear correction factor introduced by Mindlin (1951).

We note that the contribution of the rotatory inertia terms is small and can be neglected
(Mindlin, 1951). Using this criterion, we obtain the frequency of a simply supported plate

for the (m. n) mode as,
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For a concentrated force F () applied at the center of the plate (/2. 5/2) the dis-
placement response of the plate is given by eqn (5)
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THE IMPACT PROBLEM

The problem will be formulated both for elastic and inelastic impacts. The elastic
impact refers to the case considered by Karas (1939) and Zener (1941). In these formu-
lations, Hertzian contact force law is assumed for the effect of local elastic deformation at
the region of contact. t.e.

F=kS'" (6)

where § is the relative approach of the mass and the plate. and & is a material constant that
depends on the radius of the striking mass and the modulus of elasticity of the mass and
the plate.

For the casc of perminent indentation, the following assumptions have been made
similar to Barnhart and Goldsmith (1957).

(i) The initial kinetic encrgy is completely transformed into the kinetic encrgy of
rebound and the energy needed to form the permanent crater. This requires that the mass
deforms only clastically and that vibrations of the mass and plate can be neglected. The
clastic deformation of the mass was veritied experimentally by Barnhart and Goldsmith
(1957). Furthermore, Rayleigh (1906) showed that very little vibration is induced in an
oscillating system under the influence of forees of duration long in comparison with its
natural periods.

(i) The rebound energy of the mass is derived solely from the clastic strain energy
stored equally in the mass and plate. This has been substantiated by the work of Tabor
(1933) for identical clastic properties of the mass and plate.

(iit) The foree law is derived from the moditied Hertzian law of contact, i.e. for
indentation,

F=NS§", 0<85<8S.. (N
and for the recovery process,
F=F (S'S' )"2 Su=S2S (8)
- m S," “S, "’ M = = Iy

when S, is the maximum relative approach, §,, is the permanent crate depth, and VN and n
are material constants to be obtained experimentally. Noteinegn (8). whenS = S,. F = F,,,
the peak contact foree. Note the recovery process is Hertzian or elastic.

DETERMINATION OF CONTACT FORCE

The nonlincar integral equations of the contact force for the impact are obtained by
combining the relative approach of the striking mass and the plate with the assumed force-
deflection relationship at the contact point given by eqns (7) and (8). The solution is effected
by the small-time increment method, where the time increment is sufliciently small so that
a lincar force-time relation may be used during each increment. At the beginning of contact,
the local deformation dominates. Therefore, a recursive scheme that neglects the structural
deflection in the initial stage has been formulated for the solution of the contact force. This
scheme is shown to be convergent for both elastic and inclastic contacts.
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For the recovery process the solution starts off with the initial conditions on force and
displacement corresponding to the time when the contact force reaches a maximum value.
obtained from the indentation process.

ENERGY TRANSFER DURING IMPACT

The totul energy absorbed in the (m. n) mode of the plate is given by

N

AE,,, = (2/pabh) N
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where T, is the time when the contact ceases. Following Zener and Feshbach (1939) we
normalize the contact force as

7

) -
jh)=Fu¥f F(1)dr. (10)

n

This normalization procedure minimizes the errors resulting from the ignorance of the
actual contact foree. If ¢ denotes the coetlicient of restitution, then the change of momentum
produced by the contact toree s

r

myte(l +¢) =J ' F(r)dr. (n
{

Denoting F, the initial energy of the mass, by myri/2, we have

AE/L = (1 +¢)°R (12)
where
. ' T, 2
R= (4""’/’"")/'),..4;},., ,,..%“ U:) Sy et dr (13)
From conservation of energy we have
AEE = 1 —¢°, (14)
FFrom egns (12) and (14) we have
e={l1-R)(1+R). {15)

NUMERICAL RESULTS AND DISCUSSION

Consider a rectangular steel plate with the dimensions ¢ = b = 30 in, (76.2 cm) and
B = 1/2in. (1.27 cm) upon which a steel sphere of diameter 1/2 in. (1.27 cm) impinges with
a velocity of 150 fts~' (4572 cm s~ ). Barnhart and Goldsmith (1957) report experimental
results for the case of the impact of an identical projectile on a beam of 30 in. (76.2 cm)
span and a cross-section of 1/2in. x 1/2in. (1.27 cm x 1.27 cm). In our platec impact study,
we assume an identical local force indentation law. The indentation parameters used in our
analysis arc & = 10989 x 10° ¥V = 1.29 x 10", and n = 1.128. The crater depth in the plate
is also based on the experimental values for the beam from Barnhart and Goldsmith (1957).
In the numerical computations. we employ nondimensional quantities. We define
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Fig. 1. Contact force variation.

dimensionless time,

=t (ph’ k)3, (16)
dimensionless contact foree,
F* = Flkh*?, and (17
dimensionless central deflection
w* = w(a/2,b/2,1)/h. (18)

The striking elastic sphere is tuken to have a dimensionless mass
m* = m/ph" (19)
and a dimensionless velocity
V= V|(E/p)"°. (20)

The contact force variation for various cascs is shown in Fig. 1. The combined effect of
shear deformation and permanent indentation is found to change the nature of the contact
force variation and to decrease the maximum value of the contact force. The contact times
for the cases involving permanent indentation (with and without shear deformation) are
somewhat less when compared with the corresponding elastic solutions.

Figure 2 shows the plate central displacement as a function of time for various cases.
All the curves secem to follow the same pattern with displacement steadily increasing, then
reaching a plateau and then increasing to a peak value when the waves get reflected off the
boundary of the plate. If the plate were infinite, the displacement corresponding to the
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Fig. 2. Plate centeal deflection,

steady value (at the plateau) would continue indefinitely which has been identified as
“intrinsic inclasticity” of large plates by Zener (1941). The peak displucements associated
with the permanent indentations are significantly less compared to the clastic impact
solutions because of the smaller contact force resulting at the contact region.

Figures 1 and 2 indicate the minimal contribution of shear deformation as contact
force and displacement time historics. The cffect is not pronounced at moderate impact
velocitics. For higher impact velocities significant differences can result due to shear defor-
mation as reported by Chattopadhyay (1977).

Figure 3 shows the energy absorbed in the plate as a fraction of the initial kinctic energy
of the mass for the various cases considered. Typically, the encrgy absorbed associated with
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Fig. 3. Encrgy absorption as a function of plate size.
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permanent indentation is more compared to elastic impact, with additional energy going
to deform the plate permanently. However, more spectacular is the case involving inden-
tation in a shear-deformable plate. Considerably more energy is absorbed in a shear-
deformable plate when considering permanent indentation, than for the case of elastic
deformation alone. A major contribution comes from the dynamic plasticity where shear
deformation effects are pronounced, as shown by Jones and Gomes de Oliveira (1979).
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